Vocabulary

- Avogadro's number
- Mole
- Molar mass
- Empirical formula
- Molecular formula
- Chemical equation
- Synthesis reaction
- Decomposition reaction
- Single Replacement reaction

Equations

$$
\text { Percent Yield }=\underset{\text { Theoretical Yield }}{\text { Actual Yield }} \text { x } 100
$$

Core Concepts

- Three methods for measuring the amount of a substance.
- $1 \mathrm{~mol}=6.02 \times 10^{23}$ representative particles
- $1 \mathrm{~mol}=$ molar mass
- $1 \mathrm{~mol}=22.4 \mathrm{~L}$ of a gas at STP
- How to calculate molar mass.
- Determining the percent by mass of any element in a given compound (percent composition).
- Determine the empirical formula.
- Determine the molecular formula.
- Writing word equation from chemical formulas or writing chemical formulas from a sentence.
- Balancing chemical equations to obey the law of conservation of mass.
- What are the 5 reaction types?
- Synthesis
- Decomposition
- Single Replacement (use activity series to determine if the reaction works)
- Double Replacement (reaction only works if a solid, water or gas forms)
- Combustion
- Double Replacement reaction
- Combustion reaction
- Stoichiometry
- Mole ratio
- Actual yield
- Theoretical yield
- Percent yield
- Excess reagent
- Limiting reagent
- Predicting the reaction type and products from the given reactants.
- Balance equations are used to calculate how much reactant or product is formed in a chemical reaction.
- What is the mole ratio?
- How do you solve a stoichiometry problem?
- Must get to moles of the starting material.
- Use the mole ratio to get to the moles of the item you need to solve for.
- End the problem in the desired unit.
- What is a limiting reagent?
- Determine the limiting reagent.
- What is an excess reagent?
- Calculate the theoretical yield of the reaction (must use limiting reagent).
- Determine the percent yield of the reaction.

